GRN_perturbationGene regulatory networks (GRNs) govern the cell’s transcriptional output both at steady state and in response to perturbations, and thus act as major molecular determinants of cell-type identity. The long-term aims of the Cahan Laboratory are

  1. To develop computational and experimental tools to map mammalian GRNs
  2. To better understand how canonical signaling pathways modulate and are modulated by transiently established GRNs in the developing embryo
  3. To characterize how cell type specific GRNs are rewired during tumorigenesis and progression

Towards these ends, we work across several disciplines including molecular and developmental biology, manipulation of pluripotent stem cells, population based and single-cell genomics, and computational and network biology. The outcomes of this research program will include improving the fidelity of directed differentiation to mesendodermal lineages (for purposes of disease modeling, drug screening, and regenerative medicine), the generation of fundamental insights into the interactions between GRNs, signaling pathways, and cell fate decisions, and improved models of human tumors.

We are part of the Institute for Cell Engineering (ICE) and the Department of Biomedical Engineering.

©2015 Patrick Cahan – all rights reserved